Class E Study Guide

This study guide is designed for water operations specialists taking the Class E water certification exam. It also serves as a workbook for Class E continuing education courses. It is a condensed version of Safe Drinking Water for Your Small Water System: An Operations Specialists Guide.
Disclaimer

Several photographs and illustrative drawings that appear in this study guide have been furnished through the courtesy of various product distributors and manufacturers. Any mention of trade name and commercial products or services does not constitute endorsement or recommendation for use by the Minnesota Department of Health or the Minnesota Rural Water Association.

This study guide presents a summary of regulations applicable to small drinking water systems. Should the summarized information in this document be inconsistent with a governing rule or statute, the language of the rule or statute shall prevail.

First Edition Copyright© 2003 Minnesota Department of Health
Second Edition Copyright© 2009 Minnesota Department of Health
Third Edition Copyright© 2019 Minnesota Department of Health

This study guide may be reproduced, in whole or in part, for educational purposes only. Please credit the “Minnesota Department of Health/Minnesota Rural Water Association” if any portion of this manual, including photographs, is used in another publication.
Table of Contents

Safe Drinking Water Act ... 1

Public Water System Types .. 1

Comparison of Requirements: Nonmunicipal Community
vs. Nontransient Noncommunity Water Systems.................................. 2

Operations Specialists Certification ... 3

Record Keeping Requirements ... 4

Recommended Standards in Operating and Maintaining Your Water System 5

Public Water System’s Responsibilities for Providing Safe Drinking Water 7

Source Water Protection ... 8

Groundwater Wells ... 8

Sample Well Log ... 12

Storage and Pressure Tanks ... 13

Well Disinfection ... 14

Regulated Drinking Water Contaminants ... 19

Sample Results Forms ... 20

Public Notification ... 22

Cross Connections ... 22

Security .. 23

Safety for Small Water Systems .. 24

Class E Application .. 27
Safe Drinking Water Act

The Federal Safe Drinking Water Act (SDWA) is the principal regulation governing public water systems in Minnesota. It defines what a public water system is, sets drinking water quality standards, institutes water sampling and survey schedules, establishes requirements for source water protection and operations specialists certification, and more.

Public Water System Types

The Minnesota Department of Health (MDH) regulates public water systems in Minnesota.

Nonmunicipal Community Public Water System

Community public water systems serve “at least 25 year-round residents or 15 service connections used by year-round residents.” Many community water systems are cities. A private party usually owns nonmunicipal community water systems, ones that serve water to people in their homes but are not municipalities. Examples of nonmunicipal community water systems are nursing homes, prisons, manufactured housing developments, and apartments that have their own supply of water.

Nontransient Noncommunity Public Water System

Noncommunity public water systems serve water to people in places other than their home. Those that serve a differing group of people, such as a resort or highway rest stop, are transient noncommunity water systems. Nontransient noncommunity (NTNC) water systems, which serve the same group of people on a regular basis, including factories, office buildings, day-care centers, and schools that have their own supply of water.
Comparison of Requirements: Nonmunicipal Community vs. Nontransient Noncommunity Water Systems

<table>
<thead>
<tr>
<th>REQUIREMENT</th>
<th>NONMUNICIPAL COMMUNITY – Apartments, housing developments, nursing homes, prisons, mobile home parks</th>
<th>NONTRANSIENT NONCOMMUNITY – Schools, daycares, office buildings, factories</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLING</td>
<td>Water system collects bacteria samples quarterly (unless it is on increased monitoring due to population over 1000, surface water source, etc.).</td>
<td>MDH collects most bacteria samples (unless on increased monitoring due to population over 1000, surface water source, etc.; if this is the case, the system collects the samples).</td>
</tr>
<tr>
<td></td>
<td>Water system collects nitrate samples annually (unless on increased monitoring).</td>
<td>MDH collects most nitrate samples (unless on increased monitoring; then system collects).</td>
</tr>
<tr>
<td></td>
<td>Water system collects lead and copper samples when required.</td>
<td>Water system collects lead and copper samples when required.</td>
</tr>
<tr>
<td></td>
<td>MDH collects inorganic (IOC), synthetic organic (SOC), and volatile organic (VOC) chemical samples. IOC, SOC, and VOC samples.</td>
<td>MDH collects IOC, SOC, and VOC samples.</td>
</tr>
<tr>
<td>RESPONSE TO MCL VIOLATION</td>
<td>Public notification can be made via methods such as newspaper, handouts, etc.</td>
<td>Public notification made by posting warning notices at all potential drinking water taps.</td>
</tr>
<tr>
<td></td>
<td>For a bacteriological violation: A “Boil Water Advisory” may be issued by MDH.</td>
<td>For a bacteriological violation: Boiling is not always practical for users of water supply. Generally, consumption is restricted and an alternate source of water (such as bottled water) is provided.</td>
</tr>
<tr>
<td></td>
<td>The system may be required to provide water from an approved source (such as bottled water).</td>
<td>The system is required to provide water from an approved source (such as bottled water).</td>
</tr>
<tr>
<td>CONSUMER CONFIDENCE REPORT (CCR)</td>
<td>An annual water quality report, called the Consumer Confidence Report (CCR), must be completed and distributed by July 1 of each year.</td>
<td>Not required for noncommunity systems.</td>
</tr>
<tr>
<td></td>
<td>MDH provides the report online to the operations specialists, who completes the needed information.</td>
<td></td>
</tr>
<tr>
<td>PLAN REVIEW</td>
<td>Must submit plans for new construction and any changes or modifications made to the existing system.</td>
<td>Must submit plans for new construction and any changes or modifications made to the existing system.</td>
</tr>
<tr>
<td></td>
<td>Must submit plans for all water treatment systems.</td>
<td>Must submit plans for all water treatment systems.</td>
</tr>
<tr>
<td>Must submit plans for new wells before they are drilled.</td>
<td>Plans are not required for new wells. However, driller must submit a well notification to MDH.</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ISOLATION DISTANCES</td>
<td>All wells must meet the isolation distances specified in the Minnesota Well Code and all wells must have a minimum isolation distance of 50 feet from any potential contamination source.</td>
<td>All wells must meet the isolation distances specified in the Minnesota Well Code.</td>
</tr>
</tbody>
</table>

Operations Specialists Certification

Under Minnesota rules, all nontransient noncommunity and community water systems are required to have at least one certified water operations specialist. These systems are placed into a certification class (A through E) based on factors such as the complexity of treatment and the number of people they serve. Most nontransient noncommunity and nonmunicipal community water systems will fall into the categories for either a Class D or E water system classification. The following items designate the certification qualifications for both Class D and E water operations specialists.

Certification Requirements for Class D and E Water Operations Specialists

- All applicants must have a high school diploma or equivalent.
- A Class D applicant must have at least one year of experience in the operation of a Class A, B, C, or D system.
- A Class E applicant must have at least three months of experience in the operation of a Class A, B, C, D, or E system.
Renewal of Certificates

All certified water operations specialists need to complete continuing education in order to renew their certificates and remain certified. The amount of continuing education hours will depend on their certificate. Certificates are valid for three years. The continuing education must be completed before the certificate expires.

<table>
<thead>
<tr>
<th>Certification Class</th>
<th>Contact Hours Per 3 Year Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>16</td>
</tr>
<tr>
<td>B</td>
<td>24</td>
</tr>
<tr>
<td>A</td>
<td>32</td>
</tr>
</tbody>
</table>

Record Keeping Requirements

<table>
<thead>
<tr>
<th>Minimum For All Records (MDH correspondence)</th>
<th>Bacteria Results</th>
<th>Nitrate & Other Chemical Results (except Lead & Copper)</th>
<th>Lead & Copper Results</th>
<th>Sanitary Survey Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any records related to SDWA (e.g. Notice of Violation) must be kept for a minimum of three years.</td>
<td>5 years</td>
<td>10 years</td>
<td>12 years</td>
<td>10 years</td>
</tr>
</tbody>
</table>
Recommended Standards For Operating and Maintaining Your Water System

Wells

- Know the location of your well(s) and inspect the well(s) on a routine basis.
- Provide a secure and intact well cap. Older well caps often do a poor job of keeping insects and dirt out of the well. If possible, replace older caps with an overlapping well cap that includes a compression gasket and screened vent.
- Be sure the well casing extends at least **one foot** above the ground surface to reduce the possibility of surface water or other contaminants entering the well. Avoid landscaping projects that reduce the distance between the ground and the top of the well casing to less than the required minimum distance.
- The casing shall be vented to the atmosphere. For community water supplies, the vent shall end at least 18 inches above the finished floor elevation.
- Direct surface and roof runoff away from the well. Surface water should not collect near the well.
- Protect wells from potential vehicle damage. Direct vehicular traffic away from the well or surround the well casing with rigid posts or large rocks to help protect the well from damage.
- To the extent possible, remove any potential sources of contamination from the area near the well. All new wells must meet the minimum requirements for separation from potential contaminant sources, such as drain fields and fuel tanks.
- Properly seal all unused wells on the property.

Treatment

- Operate and maintain all water treatment devices according to the manufacturer’s specifications. Poorly maintained treatment devices often lead to water quality problems.
- Provide a watertight and covered brine tank for water softeners. Store all water softener salt up off the floor surface to prevent contamination.
- Provide a water sample tap prior to, and between, any treatment devices.

Distribution

- Eliminate cross connections and dead ends in the plumbing system. A dead end, as the name implies, is a portion of your drinking water piping that does not have water regularly moving through it. Dead ends result in stagnant water, which deteriorates and can affect water quality elsewhere in the system. Plumbing cross connections potentially allow contaminants to enter the potable water supply.
• Always disinfect the plumbing system after repairs or modifications. New fixtures, piping, or other plumbing components can introduce bacterial contamination. All seasonal wells and plumbing systems must follow seasonal start-up procedures: https://www.health.state.mn.us/communities/environment/water/docs/ncom/startup.pdf. Be sure to thoroughly flush all lines before returning to use.

• Exercise valves and fire hydrants on a routine basis to ensure that they will work properly when needed.

Other Requirements

• Designate an individual (perhaps yourself!) to become the certified water operations specialist for the system. Make sure that individual receives certification from the state and attends continuing education classes.

• Prior to making changes to the water system, determine if plan review is needed. If it is, make sure that plans are reviewed and approved by the Minnesota Department of Health (MDH) before proceeding.

• Know whom to contact in case of an emergency or if there are problems with your water system. This includes MDH staff, a well contractor, and a plumber.
Public Water System’s Responsibilities in Providing Safe Drinking Water

- **Drinking Water Standards** – The water supplied by the water system must meet all established, legally enforceable drinking water standards. Water testing must show that the water quality does not exceed the established maximum contaminant level (MCL) for each regulated contaminant.

- **Public Notification** – Each public water system must notify its customers when it does not meet an established drinking water standard.

- **Certified Water Operations Specialist** – Each nontransient noncommunity and nonmunicipal community public water system must designate at least one water operations specialist. This specialist must be certified by the state of Minnesota.

- **Sampling** – Although MDH program staff performs most SDWA compliance monitoring, the public water system is still responsible for some sampling. This monitoring may include lead and copper sampling and monthly/quarterly bacteriological sampling.

- **Source Water Protection** – Source water protection involves preventing contamination of your water supply by effectively managing potential sources of pollutants. All public water systems are required to implement source water protection measures, such as meeting all isolation distances for potential contaminant sources. Additionally, all nonmunicipal community public water systems will develop a formal wellhead protection action plan, with assistance from MDH staff. MDH is currently exploring source water protection plan approaches for the NTNC public water systems.

- **Well Code Compliance** – Installation of new wells and modifications of existing wells must meet the requirements of the Minnesota Well Code (Minnesota Rules, Chapter 4725).

- **Plumbing Code Compliance** – All installation and modification of plumbing components must meet the requirements of the Minnesota Plumbing Code (Minnesota Rules, Chapter 4714).

- **Plan Review** – Plans must be submitted for changes or additions to plumbing, installation of a new water treatment, storage, or supply system, installation or changes made to an existing treatment, storage, or supply system.

- **Record Keeping** – Records of sampling, sanitary surveys, and other correspondence from MDH must be kept on file by the water system. It is recommended that all information be kept at one location on the premises.

- **Consumer Confidence Report (CCR)** – All community water systems must provide an annual water quality report called a Consumer Confidence Report to their customers. Each year, all community water systems will receive a ready-to-go report from MDH. The operator will need to download the CCR from the MDH website and complete some information for the report. The goal of the CCR is to provide information to customers about their drinking water. The reports must be completed and distributed by July 1 of each year and will cover monitoring activities through the end of the previous calendar year. **This requirement applies to community water systems only.**
Source Water Protection

Drinking water contamination creates potential health problems and increases expenses for well owners as they seek to correct the problem. From both a health and cost perspective, it is preferable to prevent contamination from happening in the first place. Because preventing contamination is so important, all public water systems in Minnesota are required to implement “source water protection.” The following points briefly describe the responsibilities of public water supplies in source water protection.

- Be sure that any new contamination sources meet the isolation distances defined in the Minnesota Well Code.
- Monitor (or relocate) all existing contamination sources that don’t meet the required isolation distance.
- Implement wellhead protection measures for contaminant sources within your inner wellhead management zone (IWMZ), the area within 200 feet of your well in all directions. These measures include performing maintenance, educating staff, changing work practices, and moving potential contaminant sources.
- Develop and implement your wellhead protection action plan.

Groundwater Wells

The quality of water produced by a well depends on where the well is constructed and how it is constructed. “Isolation distances” are the minimum physical separation that must exist between a well and a potential source of contamination (such as a septic system). The isolation distances are based on the ability of soil and bedrock to remove certain types of contaminants from the groundwater before they reach the well.
Well Casing

The casing provides a connection to the groundwater and a pathway for bringing the water to the surface. Casing also prevents loose soil, sediment, rock, and contaminants from entering the well.
Well Cap

Weatherproof and insect-proof water supply well caps are required to prevent contamination of the well. Electrical connections for the pump and any treatment installations also require weatherproof and insect-proof covers.

Well Ventilation

An air vent is required for all public water supply wells except for wells where flowing conditions are occurring or wells in floodplains. Other requirements apply in these situations where venting of the well is not possible. Wells vents are required to allow air to enter the well when the pump turns on to prevent the well from collapsing due to the vacuum that is created. A vent is also needed to relieve pressure after the pump is shut off. This vent is usually part of the well cap. Having the vent screened and down-turned helps prevent contamination of the well. Without the screen in place, the well can easily become contaminated by insects, dust, debris, etc.

Sanitary Well Seal

A sanitary well seal is used in place of a well cap on wells that have piping exiting at the top of the casing. An example of this is a well with a jet pump. A one-piece top plate (solid) sanitary seal must be used for wells in outdoor locations. A two-piece top plate (split) sanitary seal may be used for wells located inside of a well/pump house.
Discharge Line or Water Service Line

The discharge line or water service line delivers the water from the well to the buildings being served. This pipe must meet the minimum requirements of the Minnesota Plumbing Code for water service lines.

Check Valve

The check valve is used to prevent water from flowing back down into the well when the pump has been shut off. If the check valve fails, the water flowing back down into the well will stir up the geological formation, which may cause silt, sand, or other materials to be present in the drinking water.

Drop Pipe

A drop pipe is a vertical pipe that carries water from a submersible pump, located in the well casing, to an underground discharge coupling (pitless adapter or pitless unit) or out the top of the casing.

Well Screen

The purpose of the well screen is to prevent sediment from entering the well while allowing water to enter the well.

Submersible Pump

This pump is designed to operate completely submerged under water in the well casing and pumps water from the well to the distribution system.

Raw Water Sample Tap

A raw water sample tap allows for collection of water samples prior to any treatment. To prevent possible contamination of the water supply, the tap must have the threads ground off (or otherwise not be threaded) to prevent connecting a hose to the tap.
Sample Well Log

WELL OR BORING LOCATION

<table>
<thead>
<tr>
<th>Township Name</th>
<th>Township No.</th>
<th>Range No.</th>
<th>Section No.</th>
<th>Fraction (S.W. — E.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GPS LOCATION — decimal degrees (to four decimal places).

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

House Number, Street Name, City and ZIP Code of Well Location

Sketch map of wellboring location, showing property lines, roads, buildings, and direction.

USE

- Domestic
- Irrigation
- Industrial/Commercial
- Drinking Water
- Other

DRILLING METHOD

- Cable Tool
- Auger
- Rotary
- Openhole
- Other

DRILLING FLUID

- Well Hydraulically
- Yes
- No

Casing Material

- Steel
- Plastic
- Other

Casing Diameter

<table>
<thead>
<tr>
<th>in. To</th>
<th>1.25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Casing Specifications

<table>
<thead>
<tr>
<th>Weight</th>
<th>lbs.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROPERTY OWNER’S NAME/COMPANY NAME

Property owner’s mailing address if different than well location address indicated above.

SCREED

- Open Hole

Type

- Other

Wellhead Completion

- No

SCREEN

- No

Set between

- ft and

FITTINGS

- ft

** screens**

WELL OWNER’S NAME/COMPANY NAME

Well boring owner’s mailing address if different than property owner’s address indicated above.

GEOLOGICAL MATERIALS

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COLOR

- Red
- Black
- Other

HARDNESS OF MATERIAL

- Hard
- Soft
- Other

FROM TO

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL

- One bag = # lbs. cement or 1/2 lb. to 1 bushel

NEAREST KNOWN SOURCE OF CONTAMINATION

- West

DRAINAGE

Varies

WELL CONTRACTOR CERTIFICATION

- Yes
- No

Licorice Business Name

- Lt. or Reg. No.

Certified Representative Signature

Date

- Name of Driller

- 18-205-15 (Rev. 4/10)
Storage and Pressure Tanks

Storage tanks typically serve the following two purposes:

1) Provide storage volume so the well pump does not have to operate for every water use; and

2) Provide pressure to the distribution system.

Hydropneumatic Pressure Tanks

Hydropneumatic tanks operate using a pressure-rated tank containing approximately two-thirds water and one-third air at full capacity. These tanks do not have a barrier separating the air and water in the tank.

Bladder Pressure Tanks

Shown in the diagram is a small-scale pressure tank that uses a “bladder” as a flexible barrier between air and water in the tank. The bladder prevents loss of air to the water.

Hydropneumatic pressure tanks and bladder pressure tanks are allowed at systems that provide water to fewer than 150 people.
Well Disinfection

When to Disinfect

Well disinfection can eliminate or reduce many kinds of harmful bacteria and viruses as well as nonharmful bacteria, which can cause unpleasant taste and odors. However, disinfection will **not** correct water problems caused by chemical contamination from nitrate, fuels, pesticides, or other substances. Well disinfection should be performed under the following circumstances:

- When coliform bacteria are present in the water
- After flooding of the well
- After plumbing installation, (piping, softeners, sinks, filters)
- After casing or pump repairs – submersible types or other
- When drinking water tastes or odors change, (e.g. from iron or sulfur reducing bacteria)
- During startup of seasonal wells

More information is available: https://www.health.state.mn.us/communities/environment/water/wells/waterquality/disinfection.html

Safety

ELECTRICAL

EXTREME CAUTION is advised, as you will be working with electricity and water. Potentially lethal voltages exist. If you are not acquainted with working with electricity, seek professional advice. Your safety precautions should include:

- Turn off the pump circuit breaker before removing the well cap
- While the breaker is off, examine for chafed wire insulation or missing wire nuts and repair as necessary
- Wear rubber soled shoes or boots, preferably waterproof

CHEMICAL

Severe eye damage may result from contact with chlorine, including bleach and highly chlorinated household water.

- Users of the water must be warned to not drink or bathe with the water while chlorine is still present in the system. (This applies to high level shock treatment for disinfecting the well and distribution system, not routine disinfection where a low level of chlorine is present in the water at all times.)
- Do not leave bleach jugs lying around. Ingestion of bleach is the most common toxic exposure for children in the U.S.
• If using household bleach to disinfect, make sure there are no additives, such as “splash-free”, “fragrances”, “stain removers”, “color-boosters”, or algaeicides.

• Look on the container for the NSF logo identifying that it is safe for drinking water. Chemicals used to disinfect the drinking water system must meet ANSI/NSF 60 standards.

• If disinfecting a well (not continual disinfection), the chemical does not have to meet ANSI/NSF 60 as long as it is registered by the United States Environmental Protection Agency according to the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), section 3(c)(7)(A), as an antimicrobial pesticide for use in potable water.

• Wear protective goggles or a face shield when working with the bleach.

RESPIRATORY

Well pits pose an extreme hazard as they frequently contain a build-up of toxic gases or simply lack oxygen to sustain life.

• DO NOT ENTER WELL PITS. Death can occur in even a shallow well pit.

• Leave disinfection of wells in pits to licensed well or pump contractors.

Well Disinfection Procedure

• **STEP 1 – Isolate critical areas**
 o Bypass softeners, bait tanks, livestock, and anything else that might be vulnerable to chlorine to prevent damage to the device or animals.
 o Install a new filter element if the water system has any present.
 o Since softeners themselves may be a source of contamination, it is good to disinfect the softener at the same time the well is being disinfected. See the end of this section for a softener disinfection procedure.

• **STEP 2 – Electrical safety**
 o Turn off the electrical power to the pump. If the breaker box has a “lockout” hasp, use it to prevent someone from accidentally turning on the water pump circuit breaker.

• **STEP 3 – Remove well seal/cap**
 o With electrical power off, remove the well cap and lift the wires/wire nuts out and pull to the side.
• **STEP 4 – Mix a bleach solution**
 o Water chemistry and water system sizes vary. These differences will determine the amount of bleach solution that will be needed to properly disinfect your water system. Use between 50-200 parts per million (ppm) of bleach in the recirculating water (Step 7) for disinfecting your water system. Do not mix bleach solution that is greater than 200 ppm. A bleach solution with greater than 200 ppm of bleach will reduce the disinfection effectiveness.
 o It is recommended to start with:
 1. Pouring water from the water system into a clean 5-gallon pail to ¾ full
 2. Add the amount of bleach as indicated in the table.

<table>
<thead>
<tr>
<th>Amount of water in well (feet)</th>
<th>Well casing diameter (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>2 cups</td>
</tr>
<tr>
<td>50</td>
<td>2 cups</td>
</tr>
<tr>
<td>100</td>
<td>2 cups</td>
</tr>
<tr>
<td>300</td>
<td>3 cups</td>
</tr>
</tbody>
</table>

• **STEP 5 – Pour chlorine mixture into well**
 • Avoid getting any bleach solution on the well cap components and wires. It will cause corrosion.

• **STEP 6 – Recirculate chlorinated water**
 o Recirculation of chlorinated water helps to wash down the sidewalls of the well casing. Mix the water column thoroughly and distribute the chlorine.
 • Place garden hose into well casing
 • Turn on pump power
 • Run garden hose from the water system, and put it back into the casing to recirculate water. Recirculate this for about 30 minutes after the chlorine smell appears from the garden hose.
 • You may notice that the water coming from the garden hose turns reddish for a brief period. This is due to the chlorine precipitating iron in the water. If the water appears excessively red and cloudy from this reaction, discharge the hose outside of the casing until the water runs clear.
 • Rinse well components with commercially bottled water. Rinsing washes off bleach solution to prevent corrosion.
• **STEP 7 – Bring chlorine to each faucet**
 - While water is circulating, run water from each fixture one at a time until you smell bleach (or use chlorine test papers), and then close the faucet. Do this for each faucet, including:
 - Cold and hot water taps
 - Toilets and shower/bath fixtures
 - Any outside faucets or yard hydrants
 - Faucet aerators may need to be removed if clogging occurs from precipitated iron.
 - Chlorine test papers, such as those commonly used in restaurants to check chemical sanitizing dishwashers, are not necessary but provide a visual indication that chlorine is present.

• **STEP 8 – Remove the chlorinated water**
 - Let the bleach solution sit in the water system for a minimum of two hours or overnight. In the morning, run a garden hose to flush out the system.
 - Since chlorine will kill vegetation, direct the water to an area where it won’t matter if plants are harmed.
 - Do not run the water into your septic system as the amount of water required to flush the system may hydraulically overload the septic system.
 - TOTAL chlorine must be absent prior to taking water samples for coliform analysis. Be aware that any amount of chlorine left in the system may erroneously result in a negative coliform test.
 - When a chlorine test is unavailable, wait a few days after the last trace of chlorine odor has been smelled before submitting a water sample for coliform analysis. This will ensure a valid test result.
Disinfection Issues

Expectations and Concerns

• It may take as little as half an hour or as many as 4 days to completely remove the chlorine odor from the water system. To facilitate faster removal of the chlorine in stubborn cases, a hose splitter may be attached with one hose running back into the casing and the other hose pumping to waste.

• Water heaters take a long time to flush out once chlorine has been introduced into them. Do not shower/bathe with water containing high levels of chlorine due to the possibility of damaging your eyes.

• It is not unusual to require 2, 3, 4, or more disinfections to clear water systems of coliform bacteria that have been growing in the system for a period of time. If the well refuses to clear, a licensed well driller should be enlisted to use special techniques and equipment to flush the well. It is essential that any water system defects that could allow surface water to enter the well be corrected.

• Plumbing grit and precipitated minerals may form when the chlorine is added to the system. This grit can cause clogging with faucet aerators, flush valves, water solenoids, and equipment using filters.

Softener Disinfection

• Water softeners may be damaged by excessive amounts of chlorine, but the softener itself should be chlorinated when there are bacteria problems. Follow the manufacturer’s instructions for disinfecting the particular unit you have.

Follow-up

• Frequently, coliform bacteria will regrow in the water system after about a month. For this reason, it is important to retest in approximately 30 days after disinfection. If coliform is again detected, disinfect the well using the same procedure.
Regulated Drinking Water Contaminants

<table>
<thead>
<tr>
<th>CONTAMINANT</th>
<th>MCL/ACTION LEVEL (AL)*</th>
<th>SOURCE</th>
<th>HEALTH RISKS CHRONIC/ACUTE**</th>
<th>MONITORING FREQUENCY***</th>
<th>SAMPLE COLLECTOR****</th>
</tr>
</thead>
<tbody>
<tr>
<td>BACTERIA (MICROBIOLOGICAL)</td>
<td>0 (NO E. coli SHOULD BE PRESENT)</td>
<td>NATURALLY OCCURING IN THE ENVIRONMENT/HUMAN AND ANIMAL WASTES</td>
<td>ACUTE</td>
<td>ANNUAL (at minimum, may be quarterly or monthly)</td>
<td>MDH</td>
</tr>
<tr>
<td>NITRATE (INORGANIC)</td>
<td>10 milligrams per liter (mg/L)</td>
<td>ANIMAL WASTES AND FERTILIZERS</td>
<td>ACUTE – INFANTS UNDER 6 MONTHS OF AGE WHO DRINK WATER HIGH IN NITRATE MAY BECOME SERIOUSLY ILL (BLUE BABY SYNDROME) AND MAY DIE</td>
<td>ANNUAL</td>
<td>MDH</td>
</tr>
<tr>
<td>ARSENIC (INORGANIC)</td>
<td>0.010 mg/L</td>
<td>NATURALLY OCCURING MINERAL IN SOIL AND BEDROCK, BEDROCK, AND UNDERGROUND SOIL</td>
<td>CHRONIC</td>
<td>1 SAMPLE EVERY 3 YEARS AND REDUCED BASED ON HISTORICAL MONITORING</td>
<td>MDH</td>
</tr>
<tr>
<td>LEAD/COPPER</td>
<td>LEAD 0.015 mg/L COPPER 1.3 mg/L</td>
<td>LEAD PIPES, SOLDER IN HOUSEHOLD PLUMBING, AND BRASS FIXTURES</td>
<td>CHRONIC</td>
<td>BEGINS EVERY 6 MONTHS AND REDUCED BASED ON HISTORICAL MONITORING</td>
<td>WATER SYSTEM</td>
</tr>
</tbody>
</table>

* Maximum Contaminant Level (MCL) is the greatest amount of a particular contaminant allowed in drinking water. Action Level (AL) is a contaminant concentration that if reached in a certain percentage of samples requires specified actions by the public water supply.

** Most contaminants are considered chronic, meaning that cancer or other ill health may result if the contaminant is consumed at relatively low concentrations over extended periods of time. Acute contaminants may have the potential to pose an immediate health risk if consumed.

*** Additional monitoring may be required if contaminants are detected at elevated levels or certain population requirements are met.

**** Community water supplies typically collect their own nitrate and coliform samples.
Sample Results Forms

Date Collected: The date the water sample was collected at your system.

Collector Name: The person who collected the water sample.

Sampling Point: The location where the sample was collected.

PWSID: This 6 digit identification number is unique to your system. Please refer to it anytime you are referencing your system.

Contaminant Tested: The contaminant that the water was tested for. In this case, the water was tested for bacteria (Bacteria Result) and nitrate (Nitrate + Nitrite Nitrogen, Total). These are the two most common water tests.

Result: Result of the test(s) done. In this case, no bacteria were found and the nitrate result was less than 0.05 milligrams per liter (mg/L).
After pages that contain sample results, the report contains the “Batch” quality control data. These results are used when determining if the sample result is valid for use in compliance determinations. Please talk to your compliance officer if you have questions regarding this data.
Public Notification

If a water supply fails to meet or comply with requirements regarding an applicable maximum contaminant level (MCL), it must notify the public. Additionally, the public water system may need to supply an alternative source of safe drinking water until the problem has been corrected.

A public notice warns all potential users of the water supply that the water has been found to be in violation of the SDWA. The notice must include possible health effects from consuming the water. The notice must also include a location where safe water is available if the system is required to provide an alternate source of water. For NTNC public water supplies, an acceptable method of providing public notification is to post warning signs at all potential drinking water taps. For nonmunicipal public water systems, an acceptable method of providing public notification is to place a notice in a local newspaper or provide notification to each water consumer.

Cross Connections

Cross connection. A direct connection of a potable water source with any system, equipment or fixture that contains nonpotable water.

Backflow. An undesired, reversed flow in a piping system. Backflow can be caused by back-siphonage, backpressure, or a combination of the two.

Back-siphonage backflow occurs when there is a partial vacuum (negative pressures) in a water-supply system, potentially drawing contaminants into a potable water supply. The effect is similar to sipping a soda by inhaling through a straw.

Backpressure backflow occurs when the pressure of the nonpotable system exceeds the positive pressure in the potable water distribution lines. This allows contaminants to be forced back into the potable water system.

Key Points in Cross Connection Control Are:

- Eliminate or protect direct connections by proper backflow preventers between potable and nonpotable systems.
- Design piping systems in the potable water distribution system so that enough water at the desired pressure is always available.
- Maintain the distribution system to minimize breaks. Prevent any new connections to equipment or systems that could allow the entry of contaminants, unless a proper backflow prevention device is provided.
- Maintain all backflow preventers in good working order.
- Be alert to the potential for contamination due to cross connections to plumbing fixtures, equipment, or other systems.
Preventing Backflow

There are several basic ways to prevent or reduce the possibility of backflow in cross connections: air gaps, atmospheric vacuum breakers, hose bibb vacuum breakers, pressure-type vacuum breaker assemblies, double check valve assemblies, dual-check valve with intermediate atmospheric vent, and reduced-pressure backflow prevention assemblies. The most reliable means of preventing backflow is an air gap.

An air gap is a physical separation of the potable and nonpotable systems by an air space – it is the most reliable backflow prevention measure. The vertical distance between the supply pipe and the flood-level rim should be two times the effective diameter of the supply pipe, but never less than one inch. If the air gap is affected by vertical sidewalls above the flood-level rim, the air gap should be three times the effective diameter of the supply pipe, but never less than one inch. An air gap can be used in situations where potable water runs into a tank, drain, or pipe which is under atmospheric pressure. This type of backflow prevention method cannot be used for a direct connection to a pressurized system.

Security

The items listed below may help prevent vandalism and reduce potential safety hazards.

- Routinely check the facility for any signs of tampering. Items to check include wells, well houses, plumbing, treatment rooms, storage rooms, and the water facility grounds. It is recommended to check the facilities on a daily basis, which will allow you to quickly find any problem that has come up since the last check.
- Consider using locks on all well house doors. Provide locking well caps.
- Prevent access to other water systems components – such as tanks, towers, treatment equipment, and chemical storage – as much as possible. Limit public access to water system components. Deter entry to these areas with signs labeled “Employees Only” or “Restricted Access.” Consult with your local fire department about acceptable ways to lock doors, gates, and windows.
- Be on the lookout for any suspicious activities or unknown persons around the water system. If a person is unknown, do not hesitate to ask for identification.
- Provide adequate lighting around the entire facility.
- If you use water treatment chemicals, make sure that containers purchased or delivered are intact and secure, and double check that you are buying/receiving the proper, approved chemical. Use only reliable sources and known contractors. It is a good idea to have a list of contractors and vendors that you may
use. Do not accept deliveries from unknown individuals or vendors. It is advisable to have a staff person present during all deliveries.

- If your water supply is run using a computer system, make sure that system is secure and be on the alert for attempts to disrupt its operation. Also, secure all maps, records, and any other information that is vital to the operation of the water system.

- If you hire someone from a vendor to work on the water system (plumber, well contractor, etc.) verify that any individuals coming to your facility are employed by that vendor before allowing him or her to do any work.

- Introduce yourself to local law enforcement to review your security measures and to establish a personal contact (name and phone number).

- Provide an emergency plan for your facility.

Safety for Small Water Systems

(The following is from the Ground Water Manual for Small Water Systems, 2016. The Drinking Water Assistance Program – Montana Water Center, and the Montana Department of Environmental Quality, Permitting and Compliance Division developed this publication.)

Safety is important for all public water systems, regardless of size. In order for a safety program to be successful, everyone involved in the public water system must participate in the program. Ultimately, the purpose of any safety program is to prevent accidents. Three critical aspects of a safety program are:

1. Identifying unsafe conditions and resolving those conditions,
2. Making personnel aware of unsafe acts, and
3. Holding or attending regular safety training programs.

The vast majority of injuries on water systems jobs are caused by unsafe acts of the person injured. Often, injuries occur when improper or dangerous procedures continue to be used because unsafe conditions went uncorrected. Unsafe conditions can become commonplace in small systems when an operations specialist works alone and does not have coworkers to point out safety concerns. They may also occur if one individual attempts an activity for which more than one person is needed – even if the second person would serve largely as an observer able to summon help if needed.

Unsafe conditions commonly encountered in public water supply systems include:

- **Electrical Hazards** – The bottom line for electrical safety is that only individuals knowledgeable in electrical systems and safety should be working on electrical equipment. Operations specialists who do not work on electrical equipment must be able to recognize the dangers of exposed wires, pooled water near wiring and controls, and corroded wiring.
• **Chemical Hazards** – Chemicals may be flammable, corrosive or toxic. “Right-to-Know” laws require employers to inform employees of the possible health effects resulting from contact with hazardous substances. *Safety Data Sheets* (SDS) are provided with all hazardous chemicals purchased and must be made available to all individuals potentially exposed to the chemicals through handling or routine operations. These sheets describe specific materials compatibility, handling precautions, spill responses, and hazardous properties of the chemical. The SDS sheets must be posted in a conspicuous location for easy reference.

• **Chemical Storage and Handling Hazards** – The two important aspects of chemical storage are compatibility and containment. **Compatibility** refers to appropriate storage tank, piping and valve materials, which are intended to be used with the particular chemical. **Containment** refers to the need for protective berms or other means by which chemical spills can be contained for easier clean up. In addition to using appropriate personal protective gear, an operations specialist must obtain and use the proper equipment that allows safe handling and lifting of heavy objects.

• **Flammable Situations** – Chemicals that are flammable require special storage conditions. Liquid chemicals must be carried in safety cans. Flammable liquids and solids must be stored in a separate facility. This is to ensure the chemicals are not accidentally exposed to flammable conditions.

• **Traffic Control in Work Areas** – Safe traffic control procedures are essential, even for small systems. Hazards to workers caused by fast and uncontrolled traffic endanger workers and drivers of other vehicles. Traffic control includes advising motorists and pedestrians of conditions affecting road use around the work site. Advance warning to motorists, signing and traffic guidance are all necessary components of a safety program for projects in streets.

• **Confined Spaces** – A confined space is one in which ventilation may be insufficient to remove dangerous gases or add fresh air. In addition, the size of the confined space opening may make it difficult to remove a suddenly disabled person. Dangerous gases may accumulate in confined spaces; many gases are colorless and odorless, so an operations specialist cannot know they are present without specialized testing equipment. **Work must not be done in a confined space without the proper safety equipment and someone trained to run it. A permit may be required for entry.** In many situations, a second person is needed to monitor the work of the individual in the confined space so rescue can occur if problems develop. The following is a description of safety procedures to follow when preparing to enter any tank for any reason:

 o Test the atmosphere in the tank for toxic and explosive gases and for adequate oxygen;
 o Provide adequate ventilation;
 o Make sure all people entering a tank wear a safety harness; and,
- Make sure one person is at the tank entrance observing the actions of all people in the tank. An additional person must be readily available to help the person at the tank entrance with any rescue operation.

- **Fire safety** – Fire extinguishers must be available in all locations where fire hazards exist – either through chemical combustion or electrical problems. Make sure they are located in a readily accessible and visible location.

- **First Aid** – An American Red Cross-approved first aid kit must be available in any water-testing laboratory and near any work centers where cuts, abrasions or sprains might occur. Eyewash equipment is necessary near chemical handling facilities – either plumbed into the system or as stand-alone squeeze bottles. These units must be kept clean and in good operating condition.

- **Personal Hygiene and Protective Clothing** – Protective clothing which may be required for general work on water systems include:
 - Hard-toe shoes,
 - Safety goggles for work around chemicals or moving parts,
 - Ear plugs in pump stations,
 - Gloves, and
 - Hard hats.

 SDS sheets will provide information on the hazards associated with each chemical and precautions that must be taken when handling the chemical.

- **Lifting** – Evaluate the weight of any object and do not lift more than can be safely carried. Hand trucks, dollies, or other equipment must be used when items are too heavy to carry alone and help is not readily available.
Class E Water Operator Certificate Application

To be eligible to take a certification exam, you must have hands-on operation experience (See certification qualification rules on back page).

Application Instructions:

1. Fill out the application completely. Sign & date the application. Mail the completed application and $32 exam fee to the Minnesota Department of Health (MDH).
2. The $32 non-refundable application fee must accompany the application. (This fee does not include certificate issuance fee.)
3. Check and money orders shall be made payable to MDH. Checks returned for nonpayment will be charged a $30 fee (M.S. 332.50, Subd.2).
4. Applications must be postmarked no later than 15 days prior to the exam date.
5. Upon receipt and verification of this application, we will send you a confirmation postcard listing the time, date, and location of the exam.
6. Upon passing the exam and remittance of the certificate issuance fee ($23), you will be issued a water supply system operator certificate. The certificate may be renewed every 3 years only if the operator has attended at least 4 hours of Minnesota Department of Health (MDH) approved water operations training during the three-year renewal period. Renewal training must be attended before the certificate expires.
7. The MDH will send a renewal notice to the operator one month before the certificate expires.
8. For questions regarding operator certification contact Noel Hansen at 651-201-4690 noel.hansen@state.mn.us
9. Please read the Tennessen Warning on the back of this application regarding your rights about the information you provide on the application.

Exam Date and Location You Have Selected: ________________________________

Location Date

Designated Operator Information (Print legibly and fill out completely):

<table>
<thead>
<tr>
<th>Operator’s Last Name</th>
<th>First Name</th>
<th>Middle Initial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Home Mailing Address</th>
<th>City</th>
<th>State</th>
<th>Zip</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cell Phone</th>
<th>Work Phone</th>
<th>Social Security #</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>()</td>
<td></td>
</tr>
</tbody>
</table>

Name of Water System or Facility You Are Employed by (Office Use) PWSID# CLASS

Complete Other Side →
Education

<table>
<thead>
<tr>
<th>School</th>
<th>Highest Grade Completed</th>
<th>School Location</th>
<th>Year Grad or GED Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School</td>
<td>(circle one)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 8 9 10 11 12 GED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Water Operation Experience

Present Job Title: ____________________________ Date Employed: ____/____/_____
Supervisor’s Name: ____________________________ Phone: (____)______-________
Give a brief description of the water operation duties you perform at this water system.

Qualifications

Class E certificate. An applicant for a Class E certificate must:
A. have a high school diploma or equivalent; **and**
B. have:
 (1) at least three months experience in the operation of a Class A, B, C, or D, or E system or facility, or in a related field; **OR**
 (2) satisfactorily completed a postsecondary program of courses in water or wastewater technology through Vermilion Community College or St. Cloud Technical College.

Tennessen Warning

The Minnesota Department of Health (MDH) will use the information you provided in this application to determine if you meet the requirements for the credential. You are not legally required to provide any of the requested information. Failure to provide the information, however, will result in the denial of your application. Submitting false information is grounds for denying your application or suspending, revoking, or taking other disciplinary action against your credential after it is issued.

While your application is pending, the information you submitted, except your name and address, will not be shared outside of the MDH except as authorized or required by law. In such cases, it may then be shared with others, including the Office of the Attorney General, the Minnesota Department of Revenue and persons contacted for purposes of verification or investigation. If the matter of your credential becomes contested, the information you submitted in this application may become public. When you become credentialed all information in this application becomes public, except your social security number, which remains private.

I hereby declare that any statement in the application or information provided is true and complete. I hereby acknowledge that I have read and understand the information above.

By signing this application, you are verifying that you are the hands-on operator and are directly responsible for the operation of this water system.

Operator Signature ________________________ Date ____/____/_____

5/3/19